Homogeneous two-manifolds with an invariant two-form

نویسندگان

  • Takeshi Sasaki
  • Masaaki Yoshida
چکیده

We study a 2-dimensional manifold that is homogeneous acted on by a 3-dimensional Lie group G, and that has a 2-form invariant under G. We show that such a manifold can be realized as a surface in the affine 3-space and list such realizations. Mathematics Subject Classification(2000). 53C30, 53C42, 53C45

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

Statistical cosymplectic manifolds and their submanifolds

    In ‎this ‎paper‎, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...

متن کامل

New Examples of Homogeneous Einstein Metrics

A Riemannian metric is said to be Einstein if the Ricci curvature is a constant multiple of the metric. Given a manifold M , one can ask whether M carries an Einstein metric, and if so, how many. This fundamental question in Riemannian geometry is for the most part unsolved (cf. [Bes]). As a global PDE or a variational problem, the question is intractible. It becomes more manageable in the homo...

متن کامل

Time-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection

Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...

متن کامل

Invariant f-structures on the flag manifolds SO(n)/SO(2)×SO(n-3)

Invariant structures on homogeneous manifolds are of fundamental importance in differential geometry. Recall that an affinor structure F (i.e., a tensor field F of type (1,1)) on a homogeneous manifold G/H is called invariant (with respect to G) if for any g ∈ G we have dτ(g)◦F = F ◦dτ(g), where τ(g)(xH)= (gx)H . An important place among homogeneous manifolds is occupied by homogeneousΦ-spaces ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007